EconPapers    
Economics at your fingertips  
 

Market making and incentives design in the presence of a dark pool: a deep reinforcement learning approach

Bastien Baldacci, Iuliia Manziuk, Thibaut Mastrolia and Mathieu Rosenbaum

Papers from arXiv.org

Abstract: We consider the issue of a market maker acting at the same time in the lit and dark pools of an exchange. The exchange wishes to establish a suitable make-take fees policy to attract transactions on its venues. We first solve the stochastic control problem of the market maker without the intervention of the exchange. Then we derive the equations defining the optimal contract to be set between the market maker and the exchange. This contract depends on the trading flows generated by the market maker's activity on the two venues. In both cases, we show existence and uniqueness, in the viscosity sense, of the solutions of the Hamilton-Jacobi-Bellman equations associated to the market maker and exchange's problems. We finally design deep reinforcement learning algorithms enabling us to approximate efficiently the optimal controls of the market maker and the optimal incentives to be provided by the exchange.

Date: 2019-12
New Economics Papers: this item is included in nep-cta
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://arxiv.org/pdf/1912.01129 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.01129

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-25
Handle: RePEc:arx:papers:1912.01129