EconPapers    
Economics at your fingertips  
 

Estimating Large Mixed-Frequency Bayesian VAR Models

Sebastian Ankargren () and Paulina Jon\'eus

Papers from arXiv.org

Abstract: We discuss the issue of estimating large-scale vector autoregressive (VAR) models with stochastic volatility in real-time situations where data are sampled at different frequencies. In the case of a large VAR with stochastic volatility, the mixed-frequency data warrant an additional step in the already computationally challenging Markov Chain Monte Carlo algorithm used to sample from the posterior distribution of the parameters. We suggest the use of a factor stochastic volatility model to capture a time-varying error covariance structure. Because the factor stochastic volatility model renders the equations of the VAR conditionally independent, settling for this particular stochastic volatility model comes with major computational benefits. First, we are able to improve upon the mixed-frequency simulation smoothing step by leveraging a univariate and adaptive filtering algorithm. Second, the regression parameters can be sampled equation-by-equation in parallel. These computational features of the model alleviate the computational burden and make it possible to move the mixed-frequency VAR to the high-dimensional regime. We illustrate the model by an application to US data using our mixed-frequency VAR with 20, 34 and 119 variables.

Date: 2019-12
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/1912.02231 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.02231

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2021-05-02
Handle: RePEc:arx:papers:1912.02231