Operator splitting schemes for American options under the two-asset Merton jump-diffusion model
Lynn Boen and
Karel J. in 't Hout
Papers from arXiv.org
Abstract:
This paper deals with the efficient numerical solution of the two-dimensional partial integro-differential complementarity problem (PIDCP) that holds for the value of American-style options under the two-asset Merton jump-diffusion model. We consider the adaptation of various operator splitting schemes of both the implicit-explicit (IMEX) and the alternating direction implicit (ADI) kind that have recently been studied for partial integro-differential equations (PIDEs) in [3]. Each of these schemes conveniently treats the nonlocal integral part in an explicit manner. Their adaptation to PIDCPs is achieved through a combination with the Ikonen-Toivanen splitting technique [14] as well as with the penalty method [32]. The convergence behaviour and relative performance of the acquired eight operator splitting methods is investigated in extensive numerical experiments for American put-on-the-min and put-on-the-average options.
Date: 2019-12
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1912.06809 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.06809
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().