EconPapers    
Economics at your fingertips  
 

Gauge transformations in the dual space, and pricing and estimation in the long run in affine jump-diffusion models

Svetlana Boyarchenko and Sergei Levendorski\u{i}

Papers from arXiv.org

Abstract: We suggest a simple reduction of pricing European options in affine jump-diffusion models to pricing options with modified payoffs in diffusion models. The procedure is based on the conjugation of the infinitesimal generator of the model with an operator of the form $e^{i\Phi(-i\dd_x)}$ (gauge transformation in the dual space). A general procedure for the calculation of the function $\Phi$ is given, with examples. As applications, we consider pricing in jump-diffusion models and their subordinated versions using the eigenfunction expansion technique, and estimation of the extremely rare jumps component. The beliefs of the market about yet unobserved extreme jumps and pricing kernel can be recovered: the market prices allow one to see "the shape of things to come".

Date: 2019-12, Revised 2019-12
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/1912.06948 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.06948

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:1912.06948