Robust Product-line Pricing under Generalized Extreme Value Models
Tien Mai and
Patrick Jaillet
Papers from arXiv.org
Abstract:
We study robust versions of pricing problems where customers choose products according to a generalized extreme value (GEV) choice model, and the choice parameters are not known exactly but lie in an uncertainty set. We show that, when the robust problem is unconstrained and the price sensitivity parameters are homogeneous, the robust optimal prices have a constant markup over products, and we provide formulas that allow to compute this constant markup by bisection. We further show that, in the case that the price sensitivity parameters are only homogeneous in each partition of the products, under the assumption that the choice probability generating function and the uncertainty set are partition-wise separable, a robust solution will have a constant markup in each subset, and this constant-markup vector can be found efficiently by convex optimization. We provide numerical results to illustrate the advantages of our robust approach in protecting from bad scenarios. Our results hold for convex and bounded uncertainty sets,} and for any arbitrary GEV model, including the multinomial logit, nested or cross-nested logit.
Date: 2019-12, Revised 2021-10
New Economics Papers: this item is included in nep-dcm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1912.09552 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.09552
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().