EconPapers    
Economics at your fingertips  
 

Improved Central Limit Theorem and bootstrap approximations in high dimensions

Victor Chernozhukov, Denis Chetverikov, Kengo Kato and Yuta Koike

Papers from arXiv.org

Abstract: This paper deals with the Gaussian and bootstrap approximations to the distribution of the max statistic in high dimensions. This statistic takes the form of the maximum over components of the sum of independent random vectors and its distribution plays a key role in many high-dimensional econometric problems. Using a novel iterative randomized Lindeberg method, the paper derives new bounds for the distributional approximation errors. These new bounds substantially improve upon existing ones and simultaneously allow for a larger class of bootstrap methods.

Date: 2019-12, Revised 2022-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
http://arxiv.org/pdf/1912.10529 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.10529

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:1912.10529