Credit Risk: Simple Closed Form Approximate Maximum Likelihood Estimator
Anand Deo and
Sandeep Juneja
Papers from arXiv.org
Abstract:
We consider discrete default intensity based and logit type reduced form models for conditional default probabilities for corporate loans where we develop simple closed form approximations to the maximum likelihood estimator (MLE) when the underlying covariates follow a stationary Gaussian process. In a practically reasonable asymptotic regime where the default probabilities are small, say 1-3% annually, the number of firms and the time period of data available is reasonably large, we rigorously show that the proposed estimator behaves similarly or slightly worse than the MLE when the underlying model is correctly specified. For more realistic case of model misspecification, both estimators are seen to be equally good, or equally bad. Further, beyond a point, both are more-or-less insensitive to increase in data. These conclusions are validated on empirical and simulated data. The proposed approximations should also have applications outside finance, where logit-type models are used and probabilities of interest are small.
Date: 2019-12
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/1912.12611 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.12611
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().