EconPapers    
Economics at your fingertips  
 

A Consistently Oriented Basis for Eigenanalysis

Jay Damask

Papers from arXiv.org

Abstract: Repeated application of machine-learning, eigen-centric methods to an evolving dataset reveals that eigenvectors calculated by well-established computer implementations are not stable along an evolving sequence. This is because the sign of any one eigenvector may point along either the positive or negative direction of its associated eigenaxis, and for any one eigen call the sign does not matter when calculating a solution. This work reports an algorithm that creates a consistently oriented basis of eigenvectors. The algorithm postprocesses any well-established eigen call and is therefore agnostic to the particular implementation of the latter. Once consistently oriented, directional statistics can be applied to the eigenvectors in order to track their motion and summarize their dispersion. When a consistently oriented eigensystem is applied to methods of machine-learning, the time series of training weights becomes interpretable in the context of the machine-learning model. Ordinary linear regression is used to demonstrate such interpretability. A reference implementation of the algorithm reported herein has been written in Python and is freely available, both as source code and through the thucyd Python package.

Date: 2019-12
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations:

Published in Int J Data Sci Anal 10, 301-319 (2020)

Downloads: (external link)
http://arxiv.org/pdf/1912.12983 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:1912.12983

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:1912.12983