EconPapers    
Economics at your fingertips  
 

Understanding the Great Recession Using Machine Learning Algorithms

Rickard Nyman and Paul Ormerod

Papers from arXiv.org

Abstract: Nyman and Ormerod (2017) show that the machine learning technique of random forests has the potential to give early warning of recessions. Applying the approach to a small set of financial variables and replicating as far as possible a genuine ex ante forecasting situation, over the period since 1990 the accuracy of the four-step ahead predictions is distinctly superior to those actually made by the professional forecasters. Here we extend the analysis by examining the contributions made to the Great Recession of the late 2000s by each of the explanatory variables. We disaggregate private sector debt into its household and non-financial corporate components. We find that both household and non-financial corporate debt were key determinants of the Great Recession. We find a considerable degree of non-linearity in the explanatory models. In contrast, the public sector debt to GDP ratio appears to have made very little contribution. It did rise sharply during the Great Recession, but this was as a consequence of the sharp fall in economic activity rather than it being a cause. We obtain similar results for both the United States and the United Kingdom.

Date: 2020-01
New Economics Papers: this item is included in nep-big
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2001.02115 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2001.02115

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2001.02115