Economics at your fingertips  

Refined model of the covariance/correlation matrix between securities

Sebastien Valeyre

Papers from

Abstract: A new methodology has been introduced to clean the correlation matrix of single stocks returns based on a constrained principal component analysis using financial data. Portfolios were introduced, namely "Fundamental Maximum Variance Portfolios", to capture in an optimal way the risks defined by financial criteria ("Book", "Capitalization", etc.). The constrained eigenvectors of the correlation matrix, which are the linear combination of these portfolios, are then analyzed. Thanks to this methodology, several stylized patterns of the matrix were identified: i) the increase of the first eigenvalue with a time scale from 1 minute to several months seems to follow the same law for all the significant eigenvalues with 2 regimes; ii) a universal law seems to govern the weights of all the "Maximum variance" portfolios, so according to that law, the optimal weights should be proportional to the ranking based on the financial studied criteria; iii) the volatility of the volatility of the "Maximum Variance" portfolios, which are not orthogonal, could be enough to explain a large part of the diffusion of the correlation matrix; iv) the leverage effect (increase of the first eigenvalue with the decline of the stock market) occurs only for the first mode and cannot be generalized for other factors of risk. The leverage effect on the beta, which is the sensitivity of stocks with the market mode, makes variable the weights of the first eigenvector.

Date: 2020-01
New Economics Papers: this item is included in nep-ecm, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2021-06-17
Handle: RePEc:arx:papers:2001.08911