EconPapers    
Economics at your fingertips  
 

Blocked Clusterwise Regression

Max Cytrynbaum

Papers from arXiv.org

Abstract: A recent literature in econometrics models unobserved cross-sectional heterogeneity in panel data by assigning each cross-sectional unit a one-dimensional, discrete latent type. Such models have been shown to allow estimation and inference by regression clustering methods. This paper is motivated by the finding that the clustered heterogeneity models studied in this literature can be badly misspecified, even when the panel has significant discrete cross-sectional structure. To address this issue, we generalize previous approaches to discrete unobserved heterogeneity by allowing each unit to have multiple, imperfectly-correlated latent variables that describe its response-type to different covariates. We give inference results for a k-means style estimator of our model and develop information criteria to jointly select the number clusters for each latent variable. Monte Carlo simulations confirm our theoretical results and give intuition about the finite-sample performance of estimation and model selection. We also contribute to the theory of clustering with an over-specified number of clusters and derive new convergence rates for this setting. Our results suggest that over-fitting can be severe in k-means style estimators when the number of clusters is over-specified.

Date: 2020-01
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2001.11130 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2001.11130

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2001.11130