Quasi-likelihood analysis for marked point processes and application to marked Hawkes processes
Simon Clinet
Papers from arXiv.org
Abstract:
We develop a quasi-likelihood analysis procedure for a general class of multivariate marked point processes. As a by-product of the general method, we establish under stability and ergodicity conditions the local asymptotic normality of the quasi-log likelihood, along with the convergence of moments of quasi-likelihood and quasi-Bayesian estimators. To illustrate the general approach, we then turn our attention to a class of multivariate marked Hawkes processes with generalized exponential kernels, comprising among others the so-called Erlang kernels. We provide explicit conditions on the kernel functions and the mark dynamics under which a certain transformation of the original process is Markovian and $V$-geometrically ergodic. We finally prove that the latter result, which is of interest in its own right, constitutes the key ingredient to show that the generalized exponential Hawkes process falls under the scope of application of the quasi-likelihood analysis.
Date: 2020-01, Revised 2021-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2001.11624 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2001.11624
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().