EconPapers    
Economics at your fingertips  
 

Detecting Changes in Asset Co-Movement Using the Autoencoder Reconstruction Ratio

Bryan Lim, Stefan Zohren and Stephen Roberts

Papers from arXiv.org

Abstract: Detecting changes in asset co-movements is of much importance to financial practitioners, with numerous risk management benefits arising from the timely detection of breakdowns in historical correlations. In this article, we propose a real-time indicator to detect temporary increases in asset co-movements, the Autoencoder Reconstruction Ratio, which measures how well a basket of asset returns can be modelled using a lower-dimensional set of latent variables. The ARR uses a deep sparse denoising autoencoder to perform the dimensionality reduction on the returns vector, which replaces the PCA approach of the standard Absorption Ratio, and provides a better model for non-Gaussian returns. Through a systemic risk application on forecasting on the CRSP US Total Market Index, we show that lower ARR values coincide with higher volatility and larger drawdowns, indicating that increased asset co-movement does correspond with periods of market weakness. We also demonstrate that short-term (i.e. 5-min and 1-hour) predictors for realised volatility and market crashes can be improved by including additional ARR inputs.

Date: 2020-01, Revised 2020-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Published in Risk 2020

Downloads: (external link)
http://arxiv.org/pdf/2002.02008 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2002.02008

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2002.02008