Equal Risk Pricing of Derivatives with Deep Hedging
Alexandre Carbonneau and
Fr\'ed\'eric Godin
Papers from arXiv.org
Abstract:
This article presents a deep reinforcement learning approach to price and hedge financial derivatives. This approach extends the work of Guo and Zhu (2017) who recently introduced the equal risk pricing framework, where the price of a contingent claim is determined by equating the optimally hedged residual risk exposure associated respectively with the long and short positions in the derivative. Modifications to the latter scheme are considered to circumvent theoretical pitfalls associated with the original approach. Derivative prices obtained through this modified approach are shown to be arbitrage-free. The current paper also presents a general and tractable implementation for the equal risk pricing framework inspired by the deep hedging algorithm of Buehler et al. (2019). An $\epsilon$-completeness measure allowing for the quantification of the residual hedging risk associated with a derivative is also proposed. The latter measure generalizes the one presented in Bertsimas et al. (2001) based on the quadratic penalty. Monte Carlo simulations are performed under a large variety of market dynamics to demonstrate the practicability of our approach, to perform benchmarking with respect to traditional methods and to conduct sensitivity analyses.
Date: 2020-02, Revised 2020-06
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://arxiv.org/pdf/2002.08492 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2002.08492
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().