Me, myself and I: a general theory of non-Markovian time-inconsistent stochastic control for sophisticated agents
Camilo Hern\'andez and
Dylan Possama\"i
Papers from arXiv.org
Abstract:
We develop a theory for continuous-time non-Markovian stochastic control problems which are inherently time-inconsistent. Their distinguishing feature is that the classical Bellman optimality principle no longer holds. Our formulation is cast within the framework of a controlled non-Markovian forward stochastic differential equation, and a general objective functional setting. We adopt a game-theoretic approach to study such problems, meaning that we seek for sub-game perfect Nash equilibrium points. As a first novelty of this work, we introduce and motivate a refinement of the definition of equilibrium that allows us to establish a direct and rigorous proof of an extended dynamic programming principle, in the same spirit as in the classical theory. This in turn allows us to introduce a system consisting of an infinite family of backward stochastic differential equations analogous to the classical HJB equation. We prove that this system is fundamental, in the sense that its well-posedness is both necessary and sufficient to characterise the value function and equilibria. As a final step we provide an existence and uniqueness result. Some examples and extensions of our results are also presented.
Date: 2020-02, Revised 2021-07
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2002.12572 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2002.12572
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().