EconPapers    
Economics at your fingertips  
 

Convex Optimization Over Risk-Neutral Probabilities

Shane Barratt, Jonathan Tuck and Stephen Boyd

Papers from arXiv.org

Abstract: We consider a collection of derivatives that depend on the price of an underlying asset at expiration or maturity. The absence of arbitrage is equivalent to the existence of a risk-neutral probability distribution on the price; in particular, any risk neutral distribution can be interpreted as a certificate establishing that no arbitrage exists. We are interested in the case when there are multiple risk-neutral probabilities. We describe a number of convex optimization problems over the convex set of risk neutral price probabilities. These include computation of bounds on the cumulative distribution, VaR, CVaR, and other quantities, over the set of risk-neutral probabilities. After discretizing the underlying price, these problems become finite dimensional convex or quasiconvex optimization problems, and therefore are tractable. We illustrate our approach using real options and futures pricing data for the S&P 500 index and Bitcoin.

Date: 2020-03
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2003.02878 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.02878

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2003.02878