Pricing Interest Rate Derivatives under Volatility Uncertainty
Julian H\"olzermann
Papers from arXiv.org
Abstract:
In this paper, we study the pricing of contracts in fixed income markets under volatility uncertainty in the sense of Knightian uncertainty or model uncertainty. The starting point is an arbitrage-free bond market under volatility uncertainty. The uncertainty about the volatility is modeled by a G-Brownian motion, which drives the forward rate dynamics. The absence of arbitrage is ensured by a drift condition. Such a setting leads to a sublinear pricing measure for additional contracts, which yields either a single price or a range of prices. Similar to the forward measure approach, we define the forward sublinear expectation to simplify the pricing of cashflows. Under the forward sublinear expectation, we obtain a robust version of the expectations hypothesis, and we show how to price options on forward prices. In addition, we develop pricing methods for contracts consisting of a stream of cashflows, since the nonlinearity of the pricing measure implies that we cannot price a stream of cashflows by pricing each cashflow separately. With these tools, we derive robust pricing formulas for all major interest rate derivatives. The pricing formulas provide a link to the pricing formulas of traditional models without volatility uncertainty and show that volatility uncertainty naturally leads to unspanned stochastic volatility.
Date: 2020-03, Revised 2021-11
New Economics Papers: this item is included in nep-cta
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2003.04606 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.04606
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).