EconPapers    
Economics at your fingertips  
 

Multilevel Monte Carlo with Numerical Smoothing for Robust and Efficient Computation of Probabilities and Densities

Christian Bayer, Chiheb Ben Hammouda and Raul Tempone

Papers from arXiv.org

Abstract: The multilevel Monte Carlo (MLMC) method is highly efficient for estimating expectations of a functional of a solution to a stochastic differential equation (SDE). However, MLMC estimators may be unstable and have a poor (noncanonical) complexity in the case of low regularity of the functional. To overcome this issue, we extend our previously introduced idea of numerical smoothing in (Quantitative Finance, 23(2), 209-227, 2023), in the context of deterministic quadrature methods to the MLMC setting. The numerical smoothing technique is based on root-finding methods combined with one-dimensional numerical integration with respect to a single well-chosen variable. This study is motivated by the computation of probabilities of events, pricing options with a discontinuous payoff, and density estimation problems for dynamics where the discretization of the underlying stochastic processes is necessary. The analysis and numerical experiments reveal that the numerical smoothing significantly improves the strong convergence, and consequently, the complexity and robustness (by making the kurtosis at deep levels bounded) of the MLMC method. In particular, we show that numerical smoothing enables recovering the MLMC complexities obtained for Lipschitz functionals due to the optimal variance decay rate when using the Euler--Maruyama scheme. For the Milstein scheme, numerical smoothing recovers the canonical MLMC complexity even for the nonsmooth integrand mentioned above. Finally, our approach efficiently estimates univariate and multivariate density functions.

Date: 2020-03, Revised 2023-10
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
http://arxiv.org/pdf/2003.05708 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.05708

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2023-10-03
Handle: RePEc:arx:papers:2003.05708