Exact capacitated domination: on the computational complexity of uniqueness
Gregory Gutin,
Philip R Neary and
Anders Yeo
Papers from arXiv.org
Abstract:
In this paper we consider a local service-requirement assignment problem named exact capacitated domination from an algorithmic point of view. This problem aims to find a solution (a Nash equilibrium) to a game-theoretic model of public good provision. In the problem we are given a capacitated graph, a graph with a parameter defined on each vertex that is interpreted as the capacity of that vertex. The objective is to find a DP-Nash subgraph: a spanning bipartite subgraph with partite sets D and P, called the D-set and P-set respectively, such that no vertex in P is isolated and that each vertex in D is adjacent to a number of vertices equal to its capacity. We show that whether a capacitated graph has a unique DP-Nash subgraph can be decided in polynomial time. However, we also show that the nearby problem of deciding whether a capacitated graph has a unique D-set is co-NP-complete.
Date: 2020-03, Revised 2022-07
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2003.07106 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.07106
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).