Testing Many Restrictions Under Heteroskedasticity
Stanislav Anatolyev and
Mikkel S{\o}lvsten
Authors registered in the RePEc Author Service: Mikkel Sølvsten
Papers from arXiv.org
Abstract:
We propose a hypothesis test that allows for many tested restrictions in a heteroskedastic linear regression model. The test compares the conventional F statistic to a critical value that corrects for many restrictions and conditional heteroskedasticity. This correction uses leave-one-out estimation to correctly center the critical value and leave-three-out estimation to appropriately scale it. The large sample properties of the test are established in an asymptotic framework where the number of tested restrictions may be fixed or may grow with the sample size, and can even be proportional to the number of observations. We show that the test is asymptotically valid and has non-trivial asymptotic power against the same local alternatives as the exact F test when the latter is valid. Simulations corroborate these theoretical findings and suggest excellent size control in moderately small samples, even under strong heteroskedasticity.
Date: 2020-03, Revised 2023-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://arxiv.org/pdf/2003.07320 Latest version (application/pdf)
Related works:
Journal Article: Testing many restrictions under heteroskedasticity (2023) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.07320
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().