# Non-asymptotic rates for the estimation of risk measures

*Daniel Bartl* and
*Ludovic Tangpi*

Papers from arXiv.org

**Abstract:**
Consider the problem of computing the riskiness $\rho(F(S))$ of a financial position $F$ written on the underlying $S$ with respect to a general law invariant risk measure $\rho$; for instance, $\rho$ can be the average value at risk. In practice the true distribution of $S$ is typically unknown and one needs to resort to historical data for the computation. In this article we investigate rates of convergence of $\rho(F(S_N))$ to $\rho(F(S))$, where $S_N$ is distributed as the empirical measure of $S$ with $N$ observations. We provide (sharp) non-asymptotic rates for both the deviation probability and the expectation of the estimation error. Our framework further allows for hedging, and the convergence rates we obtain depend neither on the dimension of the underlying stocks nor on the number of options available for trading.

**Date:** 2020-03

**New Economics Papers:** this item is included in nep-ecm and nep-rmg

**References:** View references in EconPapers View complete reference list from CitEc

**Citations:** Track citations by RSS feed

**Downloads:** (external link)

http://arxiv.org/pdf/2003.10479 Latest version (application/pdf)

**Related works:**

This item may be available elsewhere in EconPapers: Search for items with the same title.

**Export reference:** BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text

**Persistent link:** https://EconPapers.repec.org/RePEc:arx:papers:2003.10479

Access Statistics for this paper

More papers in Papers from arXiv.org

Bibliographic data for series maintained by arXiv administrators ().