EconPapers    
Economics at your fingertips  
 

Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data

Vladim\'ir Hol\'y and Petra Tomanov\'a

Papers from arXiv.org

Abstract: We investigate the computational issues related to the memory size in the estimation of quadratic covariation, taking into account the specifics of financial ultra-high-frequency data. In multivariate price processes, we consider both contamination by the market microstructure noise and the non-synchronicity of the observations. We formulate a multi-scale, flat-top realized kernel, non-flat-top realized kernel, pre-averaging and modulated realized covariance estimators in quadratic form and fix their bandwidth parameter at a constant value. This allows us to operate with limited memory and formulate this estimation as a streaming algorithm. We compare the performance of the estimators with fixed bandwidth parameter in a simulation study. We find that the estimators ensuring positive semidefiniteness require much higher bandwidth than the estimators without this constraint.

Date: 2020-03, Revised 2021-12
New Economics Papers: this item is included in nep-ecm and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2003.13062 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.13062

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2003.13062