Streaming Approach to Quadratic Covariation Estimation Using Financial Ultra-High-Frequency Data
Vladim\'ir Hol\'y and
Petra Tomanov\'a
Papers from arXiv.org
Abstract:
We investigate the computational issues related to the memory size in the estimation of quadratic covariation, taking into account the specifics of financial ultra-high-frequency data. In multivariate price processes, we consider both contamination by the market microstructure noise and the non-synchronicity of the observations. We formulate a multi-scale, flat-top realized kernel, non-flat-top realized kernel, pre-averaging and modulated realized covariance estimators in quadratic form and fix their bandwidth parameter at a constant value. This allows us to operate with limited memory and formulate this estimation as a streaming algorithm. We compare the performance of the estimators with fixed bandwidth parameter in a simulation study. We find that the estimators ensuring positive semidefiniteness require much higher bandwidth than the estimators without this constraint.
Date: 2020-03, Revised 2021-12
New Economics Papers: this item is included in nep-ecm and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2003.13062 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2003.13062
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().