Regression Approach for Modeling COVID-19 Spread and its Impact On Stock Market
Bohdan M. Pavlyshenko
Papers from arXiv.org
Abstract:
The paper studies different regression approaches for modeling COVID-19 spread and its impact on the stock market. The logistic curve model was used with Bayesian regression for predictive analytics of the coronavirus spread. The impact of COVID-19 was studied using regression approach and compared to other crises influence. In practical analytics, it is important to find the maximum of coronavirus cases per day, this point means the estimated half time of coronavirus spread in the region under investigation. The obtained results show that different crises with different reasons have different impact on the same stocks. It is important to analyze their impact separately. Bayesian inference makes it possible to analyze the uncertainty of crisis impacts.
Date: 2020-04
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://arxiv.org/pdf/2004.01489 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2004.01489
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().