Final Topology for Preference Spaces
Pablo Schenone
Papers from arXiv.org
Abstract:
We say a model is continuous in utilities (resp., preferences) if small perturbations of utility functions (resp., preferences) generate small changes in the model's outputs. While similar, these two questions are different. They are only equivalent when the following two sets are isomorphic: the set of continuous mappings from preferences to the model's outputs, and the set of continuous mappings from utilities to the model's outputs. In this paper, we study the topology for preference spaces defined by such an isomorphism. This study is practically significant, as continuity analysis is predominantly conducted through utility functions, rather than the underlying preference space. Our findings enable researchers to infer continuity in utility as indicative of continuity in underlying preferences.
Date: 2020-04, Revised 2024-03
New Economics Papers: this item is included in nep-mic and nep-upt
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2004.02357 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2004.02357
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().