EconPapers    
Economics at your fingertips  
 

What do online listings tell us about the housing market?

Michele Loberto, Andrea Luciani and Marco Pangallo ()

Papers from arXiv.org

Abstract: Traditional data sources for the analysis of housing markets show several limitations, that recently started to be overcome using data coming from housing sales advertisements (ads) websites. In this paper, using a large dataset of ads in Italy, we provide the first comprehensive analysis of the problems and potential of these data. The main problem is that multiple ads ("duplicates") can correspond to the same housing unit. We show that this issue is mainly caused by sellers' attempt to increase visibility of their listings. Duplicates lead to misrepresentation of the volume and composition of housing supply, but this bias can be corrected by identifying duplicates with machine learning tools. We then focus on the potential of these data. We show that the timeliness, granularity, and online nature of these data allow monitoring of housing demand, supply and liquidity, and that the (asking) prices posted on the website can be more informative than transaction prices.

Date: 2020-04
New Economics Papers: this item is included in nep-big, nep-eur, nep-pay and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://arxiv.org/pdf/2004.02706 Latest version (application/pdf)

Related works:
Journal Article: What Do Online Listings Tell Us about the Housing Market? (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2004.02706

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-22
Handle: RePEc:arx:papers:2004.02706