EconPapers    
Economics at your fingertips  
 

Epidemic control via stochastic optimal control

Andrew Lesniewski

Papers from arXiv.org

Abstract: We study the problem of optimal control of the stochastic SIR model. Models of this type are used in mathematical epidemiology to capture the time evolution of highly infectious diseases such as COVID-19. Our approach relies on reformulating the Hamilton-Jacobi-Bellman equation as a stochastic minimum principle. This results in a system of forward backward stochastic differential equations, which is amenable to numerical solution via Monte Carlo simulations. We present a number of numerical solutions of the system under a variety of scenarios.

Date: 2020-04, Revised 2020-05
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2004.06680 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2004.06680

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2004.06680