Epidemic control via stochastic optimal control
Andrew Lesniewski
Papers from arXiv.org
Abstract:
We study the problem of optimal control of the stochastic SIR model. Models of this type are used in mathematical epidemiology to capture the time evolution of highly infectious diseases such as COVID-19. Our approach relies on reformulating the Hamilton-Jacobi-Bellman equation as a stochastic minimum principle. This results in a system of forward backward stochastic differential equations, which is amenable to numerical solution via Monte Carlo simulations. We present a number of numerical solutions of the system under a variety of scenarios.
Date: 2020-04, Revised 2020-05
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2004.06680 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2004.06680
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().