EconPapers    
Economics at your fingertips  
 

Structural Regularization

Jiaming Mao and Zhesheng Zheng

Papers from arXiv.org

Abstract: We propose a novel method for modeling data by using structural models based on economic theory as regularizers for statistical models. We show that even if a structural model is misspecified, as long as it is informative about the data-generating mechanism, our method can outperform both the (misspecified) structural model and un-structural-regularized statistical models. Our method permits a Bayesian interpretation of theory as prior knowledge and can be used both for statistical prediction and causal inference. It contributes to transfer learning by showing how incorporating theory into statistical modeling can significantly improve out-of-domain predictions and offers a way to synthesize reduced-form and structural approaches for causal effect estimation. Simulation experiments demonstrate the potential of our method in various settings, including first-price auctions, dynamic models of entry and exit, and demand estimation with instrumental variables. Our method has potential applications not only in economics, but in other scientific disciplines whose theoretical models offer important insight but are subject to significant misspecification concerns.

Date: 2020-04, Revised 2020-06
New Economics Papers: this item is included in nep-big and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2004.12601 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2004.12601

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2004.12601