Economics at your fingertips  

Modality for Scenario Analysis and Maximum Likelihood Allocation

Takaaki Koike and Marius Hofert

Papers from

Abstract: We study the variability of a risk from the statistical viewpoint of multimodality of the conditional loss distribution given that the aggregate loss equals an exogenously provided capital. This conditional distribution serves as a building block for calculating risk allocations such as the Euler capital allocation of Value-at-Risk. A superlevel set of this conditional distribution can be interpreted as a set of severe and plausible stress scenarios the given capital is supposed to cover. We show that various distributional properties of this conditional distribution, such as modality, dependence and tail behavior, are inherited from those of the underlying joint loss distribution. Among these properties, we find that modality of the conditional distribution is an important feature in risk assessment related to the variety of risky scenarios likely to occur in a stressed situation. Under unimodality, we introduce a novel risk allocation method called maximum likelihood allocation (MLA), defined as the mode of the conditional distribution given the total capital. Under multimodality, a single vector of allocations can be less sound. To overcome this issue, we investigate the so-called multimodalty adjustment to increase the soundness of risk allocations. Properties of the conditional distribution, MLA and multimodality adjustment are demonstrated in numerical experiments. In particular, we observe that negative dependence among losses typically leads to multimodality, and thus a higher multimodality adjustment can be required.

Date: 2020-05, Revised 2020-11
New Economics Papers: this item is included in nep-gen and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Papers from
Bibliographic data for series maintained by arXiv administrators ().

Page updated 2020-11-20
Handle: RePEc:arx:papers:2005.02950