Distributional robustness of K-class estimators and the PULSE
Martin Emil Jakobsen and
Jonas Peters
Papers from arXiv.org
Abstract:
While causal models are robust in that they are prediction optimal under arbitrarily strong interventions, they may not be optimal when the interventions are bounded. We prove that the classical K-class estimator satisfies such optimality by establishing a connection between K-class estimators and anchor regression. This connection further motivates a novel estimator in instrumental variable settings that minimizes the mean squared prediction error subject to the constraint that the estimator lies in an asymptotically valid confidence region of the causal coefficient. We call this estimator PULSE (p-uncorrelated least squares estimator), relate it to work on invariance, show that it can be computed efficiently as a data-driven K-class estimator, even though the underlying optimization problem is non-convex, and prove consistency. We evaluate the estimators on real data and perform simulation experiments illustrating that PULSE suffers from less variability. There are several settings including weak instrument settings, where it outperforms other estimators.
Date: 2020-05, Revised 2022-03
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2005.03353 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.03353
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().