Critical Values Robust to P-hacking
Adam McCloskey and
Pascal Michaillat
Papers from arXiv.org
Abstract:
P-hacking is prevalent in reality but absent from classical hypothesis testing theory. As a consequence, significant results are much more common than they are supposed to be when the null hypothesis is in fact true. In this paper, we build a model of hypothesis testing with p-hacking. From the model, we construct critical values such that, if the values are used to determine significance, and if scientists' p-hacking behavior adjusts to the new significance standards, significant results occur with the desired frequency. Such robust critical values allow for p-hacking so they are larger than classical critical values. To illustrate the amount of correction that p-hacking might require, we calibrate the model using evidence from the medical sciences. In the calibrated model the robust critical value for any test statistic is the classical critical value for the same test statistic with one fifth of the significance level.
Date: 2020-05, Revised 2023-12
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2005.04141 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.04141
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).