EconPapers    
Economics at your fingertips  
 

Pricing Path-Dependent Derivatives under Multiscale Stochastic Volatility Models: a Malliavin Representation

Yuri F. Saporito

Papers from arXiv.org

Abstract: In this paper we derive a efficient Monte Carlo approximation for the price of path-dependent derivatives under the multiscale stochastic volatility models of Fouque \textit{et al}. Using the formulation of this pricing problem under the functional It\^o calculus framework and making use of Greek formulas from Malliavin calculus, we derive a representation for the first-order approximation of the price of path-dependent derivatives in the form $\mathbb{E}[\mbox{payoff} \times \mbox{weight}]$. The weight is known in closed form and depends only on the group market parameters arising from the calibration of the multiscale stochastic volatility to the market's implied volatility. Moreover, only simulations of the Black-Scholes model is required. We exemplify the method for a couple path-dependent derivatives.

Date: 2020-05
New Economics Papers: this item is included in nep-ore and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2005.04297 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.04297

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2005.04297