Macroeconomic Forecasting with Fractional Factor Models
Tobias Hartl ()
Papers from arXiv.org
Abstract:
We combine high-dimensional factor models with fractional integration methods and derive models where nonstationary, potentially cointegrated data of different persistence is modelled as a function of common fractionally integrated factors. A two-stage estimator, that combines principal components and the Kalman filter, is proposed. The forecast performance is studied for a high-dimensional US macroeconomic data set, where we find that benefits from the fractional factor models can be substantial, as they outperform univariate autoregressions, principal components, and the factor-augmented error-correction model.
Date: 2020-05
New Economics Papers: this item is included in nep-ecm, nep-ets, nep-for, nep-mac and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2005.04897 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.04897
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().