Semi-closed form prices of barrier options in the time-dependent CEV and CIR models
Peter Carr,
Andrey Itkin () and
Dmitry Muravey
Papers from arXiv.org
Abstract:
We continue a series of papers where prices of the barrier options written on the underlying, which dynamics follows some one factor stochastic model with time-dependent coefficients and the barrier, are obtained in semi-closed form, see (Carr and Itkin, 2020, Itkin and Muravey, 2020). This paper extends this methodology to the CIR model for zero-coupon bonds, and to the CEV model for stocks which are used as the corresponding underlying for the barrier options. We describe two approaches. One is generalization of the method of heat potentials for the heat equation to the Bessel process, so we call it the method of Bessel potentials. We also propose a general scheme how to construct the potential method for any linear differential operator with time-independent coefficients. The second one is the method of generalized integral transform, which is also extended to the Bessel process. In all cases, a semi-closed solution means that first, we need to solve numerically a linear Volterra equation of the second kind, and then the option price is represented as a one-dimensional integral. We demonstrate that computationally our method is more efficient than both the backward and forward finite difference methods while providing better accuracy and stability. Also, it is shown that both method don't duplicate but rather compliment each other, as one provides very accurate results at small maturities, and the other one - at high maturities.
Date: 2020-05
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://arxiv.org/pdf/2005.05459 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.05459
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().