EconPapers    
Economics at your fingertips  
 

Fault Tolerant Equilibria in Anonymous Games: best response correspondences and fixed points

Deepanshu Vasal and Randall Berry

Papers from arXiv.org

Abstract: The notion of fault tolerant Nash equilibria has been introduced as a way of studying the robustness of Nash equilibria. Under this notion, a fixed number of players are allowed to exhibit faulty behavior in which they may deviate arbitrarily from an equilibrium strategy. A Nash equilibrium in a game with $N$ players is said to be $\alpha$-tolerant if no non-faulty user wants to deviate from an equilibrium strategy as long as $N-\alpha-1$ other players are playing the equilibrium strategies, i.e., it is robust to deviations from rationality by $\alpha$ faulty players. In prior work, $\alpha$-tolerance has been largely viewed as a property of a given Nash equilibria. Here, instead we consider following Nash's approach for showing the existence of equilibria, namely, through the use of best response correspondences and fixed-point arguments. In this manner, we provide sufficient conditions for the existence an $\alpha$-tolerant equilibrium. This involves first defining an $\alpha$-tolerant best response correspondence. Given a strategy profile of non-faulty agents, this correspondence contains strategies for a non-faulty player that are a best response given any strategy profile of the faulty players. We prove that if this correspondence is non-empty, then it is upper-hemi-continuous. This enables us to apply Kakutani's fixed-point theorem and argue that if this correspondence is non-empty for every strategy profile of the non-faulty players then there exists an $\alpha$-tolerant equilibrium. However, we also illustrate by examples, that in many games this best response correspondence will be empty for some strategy profiles even though $\alpha$-tolerant equilibira still exist.

Date: 2020-05, Revised 2022-05
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://arxiv.org/pdf/2005.06812 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.06812

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2005.06812