EconPapers    
Economics at your fingertips  
 

Nested Model Averaging on Solution Path for High-dimensional Linear Regression

Yang Feng and Qingfeng Liu ()

Papers from arXiv.org

Abstract: We study the nested model averaging method on the solution path for a high-dimensional linear regression problem. In particular, we propose to combine model averaging with regularized estimators (e.g., lasso and SLOPE) on the solution path for high-dimensional linear regression. In simulation studies, we first conduct a systematic investigation on the impact of predictor ordering on the behavior of nested model averaging, then show that nested model averaging with lasso and SLOPE compares favorably with other competing methods, including the infeasible lasso and SLOPE with the tuning parameter optimally selected. A real data analysis on predicting the per capita violent crime in the United States shows an outstanding performance of the nested model averaging with lasso.

Date: 2020-05
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2005.08057 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.08057

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2005.08057