A Flexible Stochastic Conditional Duration Model
Samuel Gingras and
William McCausland ()
Papers from arXiv.org
Abstract:
We introduce a new stochastic duration model for transaction times in asset markets. We argue that widely accepted rules for aggregating seemingly related trades mislead inference pertaining to durations between unrelated trades: while any two trades executed in the same second are probably related, it is extremely unlikely that all such pairs of trades are, in a typical sample. By placing uncertainty about which trades are related within our model, we improve inference for the distribution of durations between unrelated trades, especially near zero. We introduce a normalized conditional distribution for durations between unrelated trades that is both flexible and amenable to shrinkage towards an exponential distribution, which we argue is an appropriate first-order model. Thanks to highly efficient draws of state variables, numerical efficiency of posterior simulation is much higher than in previous studies. In an empirical application, we find that the conditional hazard function for durations between unrelated trades varies much less than what most studies find. We claim that this is because we avoid statistical artifacts that arise from deterministic trade-aggregation rules and unsuitable parametric distributions.
Date: 2020-05
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2005.09166 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.09166
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().