EconPapers    
Economics at your fingertips  
 

Pricing Barrier Options with DeepBSDEs

Narayan Ganesan, Yajie Yu and Bernhard Hientzsch

Papers from arXiv.org

Abstract: This paper presents a novel and direct approach to price boundary and final-value problems, corresponding to barrier options, using forward deep learning to solve forward-backward stochastic differential equations (FBSDEs). Barrier instruments are instruments that expire or transform into another instrument if a barrier condition is satisfied before maturity; otherwise they perform like the instrument without the barrier condition. In the PDE formulation, this corresponds to adding boundary conditions to the final value problem. The deep BSDE methods developed so far have not addressed barrier/boundary conditions directly. We extend the forward deep BSDE to the barrier condition case by adding nodes to the computational graph to explicitly monitor the barrier conditions for each realization of the dynamics as well as nodes that preserve the time, state variables, and trading strategy value at barrier breach or at maturity otherwise. Given these additional nodes in the computational graph, the forward loss function quantifies the replication of the barrier or final payoff according to a chosen risk measure such as squared sum of differences. The proposed method can handle any barrier condition in the FBSDE set-up and any Dirichlet boundary conditions in the PDE set-up, both in low and high dimensions.

Date: 2020-05, Revised 2024-09
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Published in Journal of Computational Finance, 25(4):1-25 (2022)

Downloads: (external link)
http://arxiv.org/pdf/2005.10966 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.10966

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2005.10966