Deep Learning for Portfolio Optimization
Zihao Zhang,
Stefan Zohren and
Stephen Roberts
Papers from arXiv.org
Abstract:
We adopt deep learning models to directly optimise the portfolio Sharpe ratio. The framework we present circumvents the requirements for forecasting expected returns and allows us to directly optimise portfolio weights by updating model parameters. Instead of selecting individual assets, we trade Exchange-Traded Funds (ETFs) of market indices to form a portfolio. Indices of different asset classes show robust correlations and trading them substantially reduces the spectrum of available assets to choose from. We compare our method with a wide range of algorithms with results showing that our model obtains the best performance over the testing period, from 2011 to the end of April 2020, including the financial instabilities of the first quarter of 2020. A sensitivity analysis is included to understand the relevance of input features and we further study the performance of our approach under different cost rates and different risk levels via volatility scaling.
Date: 2020-05, Revised 2021-01
New Economics Papers: this item is included in nep-cmp, nep-fmk and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2005.13665 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2005.13665
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().