Accuracy of Deep Learning in Calibrating HJM Forward Curves
Fred Espen Benth,
Nils Detering and
Silvia Lavagnini
Papers from arXiv.org
Abstract:
We price European-style options written on forward contracts in a commodity market, which we model with an infinite-dimensional Heath-Jarrow-Morton (HJM) approach. For this purpose we introduce a new class of state-dependent volatility operators that map the square integrable noise into the Filipovi\'{c} space of forward curves. For calibration, we specify a fully parametrized version of our model and train a neural network to approximate the true option price as a function of the model parameters. This neural network can then be used to calibrate the HJM parameters based on observed option prices. We conduct a numerical case study based on artificially generated option prices in a deterministic volatility setting. In this setting we derive closed pricing formulas, allowing us to benchmark the neural network based calibration approach. We also study calibration in illiquid markets with a large bid-ask spread. The experiments reveal a high degree of accuracy in recovering the prices after calibration, even if the original meaning of the model parameters is partly lost in the approximation step.
Date: 2020-06, Revised 2021-05
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://arxiv.org/pdf/2006.01911 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.01911
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators (help@arxiv.org).