EconPapers    
Economics at your fingertips  
 

Neural Jump Ordinary Differential Equations: Consistent Continuous-Time Prediction and Filtering

Calypso Herrera, Florian Krach and Josef Teichmann

Papers from arXiv.org

Abstract: Combinations of neural ODEs with recurrent neural networks (RNN), like GRU-ODE-Bayes or ODE-RNN are well suited to model irregularly observed time series. While those models outperform existing discrete-time approaches, no theoretical guarantees for their predictive capabilities are available. Assuming that the irregularly-sampled time series data originates from a continuous stochastic process, the $L^2$-optimal online prediction is the conditional expectation given the currently available information. We introduce the Neural Jump ODE (NJ-ODE) that provides a data-driven approach to learn, continuously in time, the conditional expectation of a stochastic process. Our approach models the conditional expectation between two observations with a neural ODE and jumps whenever a new observation is made. We define a novel training framework, which allows us to prove theoretical guarantees for the first time. In particular, we show that the output of our model converges to the $L^2$-optimal prediction. This can be interpreted as solution to a special filtering problem. We provide experiments showing that the theoretical results also hold empirically. Moreover, we experimentally show that our model outperforms the baselines in more complex learning tasks and give comparisons on real-world datasets.

Date: 2020-06, Revised 2021-04
New Economics Papers: this item is included in nep-big, nep-cmp, nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Published in International Conference on Learning Representations (2021)

Downloads: (external link)
http://arxiv.org/pdf/2006.04727 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.04727

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2006.04727