EconPapers    
Economics at your fingertips  
 

Confidence Interval for Off-Policy Evaluation from Dependent Samples via Bandit Algorithm: Approach from Standardized Martingales

Masahiro Kato

Papers from arXiv.org

Abstract: This study addresses the problem of off-policy evaluation (OPE) from dependent samples obtained via the bandit algorithm. The goal of OPE is to evaluate a new policy using historical data obtained from behavior policies generated by the bandit algorithm. Because the bandit algorithm updates the policy based on past observations, the samples are not independent and identically distributed (i.i.d.). However, several existing methods for OPE do not take this issue into account and are based on the assumption that samples are i.i.d. In this study, we address this problem by constructing an estimator from a standardized martingale difference sequence. To standardize the sequence, we consider using evaluation data or sample splitting with a two-step estimation. This technique produces an estimator with asymptotic normality without restricting a class of behavior policies. In an experiment, the proposed estimator performs better than existing methods, which assume that the behavior policy converges to a time-invariant policy.

Date: 2020-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2006.06982 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.06982

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2006.06982