Backward Deep BSDE Methods and Applications to Nonlinear Problems
Yajie Yu,
Bernhard Hientzsch and
Narayan Ganesan
Papers from arXiv.org
Abstract:
In this paper, we present a backward deep BSDE method applied to Forward Backward Stochastic Differential Equations (FBSDE) with given terminal condition at maturity that time-steps the BSDE backwards. We present an application of this method to a nonlinear pricing problem - the differential rates problem. To time-step the BSDE backward, one needs to solve a nonlinear problem. For the differential rates problem, we derive an exact solution of this time-step problem and a Taylor-based approximation. Previously backward deep BSDE methods only treated zero or linear generators. While a Taylor approach for nonlinear generators was previously mentioned, it had not been implemented or applied, while we apply our method to nonlinear generators and derive details and present results. Likewise, previously backward deep BSDE methods were presented for fixed initial risk factor values $X_0$ only, while we present a version with random $X_0$ and a version that learns portfolio values at intermediate times as well. The method is able to solve nonlinear FBSDE problems in high dimensions.
Date: 2020-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2006.07635 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.07635
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().