Numerical Simulation of Exchange Option with Finite Liquidity: Controlled Variate Model
Kevin S. Zhang and
Traian A. Pirvu
Papers from arXiv.org
Abstract:
In this paper we develop numerical pricing methodologies for European style Exchange Options written on a pair of correlated assets, in a market with finite liquidity. In contrast to the standard multi-asset Black-Scholes framework, trading in our market model has a direct impact on the asset's price. The price impact is incorporated into the dynamics of the first asset through a specific trading strategy, as in large trader liquidity model. Two-dimensional Milstein scheme is implemented to simulate the pair of assets prices. The option value is numerically estimated by Monte Carlo with the Margrabe option as controlled variate. Time complexity of these numerical schemes are included. Finally, we provide a deep learning framework to implement this model effectively in a production environment.
Date: 2020-06
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://arxiv.org/pdf/2006.07771 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.07771
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().