EconPapers    
Economics at your fingertips  
 

The Gauss2++ Model -- A Comparison of Different Measure Change Specifications for a Consistent Risk Neutral and Real World Calibration

Christoph Berninger and Julian Pfeiffer

Papers from arXiv.org

Abstract: Especially in the insurance industry interest rate models play a crucial role e.g. to calculate the insurance company's liabilities, performance scenarios or risk measures. A prominant candidate is the 2-Additive-Factor Gaussian Model (Gauss2++) - in a different representation also known as the 2-Factor Hull-White model. In this paper, we propose a framework to estimate the model such that it can be applied under the risk neutral and the real world measure in a consistent manner. We first show that any progressive and square-integrable function can be used to specify the change of measure without loosing the analytic tractability of e.g. zero-coupon bond prices in both worlds. We further propose two time dependent candidates, which are easy to calibrate: a step and a linear function. They represent two variants of our framework and distinguish between a short and a long term risk premium, which allows to regularize the interest rates in the long horizon. We apply both variants to historical data and show that they indeed produce realistic and much more stable long term interest rate forecast than the usage of a constant function. This stability over time would translate to performance scenarios of e.g. interest rate sensitive fonds and risk measures.

Date: 2020-06
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2006.08004 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.08004

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2006.08004