EconPapers    
Economics at your fingertips  
 

Deep learning Profit & Loss

Pietro Rossi, Flavio Cocco and Giacomo Bormetti

Papers from arXiv.org

Abstract: Building the future profit and loss (P&L) distribution of a portfolio holding, among other assets, highly non-linear and path-dependent derivatives is a challenging task. We provide a simple machinery where more and more assets could be accounted for in a simple and semi-automatic fashion. We resort to a variation of the Least Square Monte Carlo algorithm where interpolation of the continuation value of the portfolio is done with a feed forward neural network. This approach has several appealing features not all of them will be fully discussed in the paper. Neural networks are extremely flexible regressors. We do not need to worry about the fact that for multi assets payoff, the exercise surface could be non connected. Neither we have to search for smart regressors. The idea is to use, regardless of the complexity of the payoff, only the underlying processes. Neural networks with many outputs can interpolate every single assets in the portfolio generated by a single Monte Carlo simulation. This is an essential feature to account for the P&L distribution of the whole portfolio when the dependence structure between the different assets is very strong like the case where one has contingent claims written on the same underlying.

Date: 2020-06, Revised 2020-08
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2006.09955 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.09955

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2006.09955