EconPapers    
Economics at your fingertips  
 

Optimal Hedging in Incomplete Markets

George Bouzianis and Lane P. Hughston

Papers from arXiv.org

Abstract: We consider the problem of optimal hedging in an incomplete market with an established pricing kernel. In such a market, prices are uniquely determined, but perfect hedges are usually not available. We work in the rather general setting of a L\'evy-Ito market, where assets are driven jointly by an $n$-dimensional Brownian motion and an independent Poisson random measure on an $n$-dimensional state space. Given a position in need of hedging and the instruments available as hedges, we demonstrate the existence of an optimal hedge portfolio, where optimality is defined by use of an expected least squared-error criterion over a specified time frame, and where the numeraire with respect to which the hedge is optimized is taken to be the benchmark process associated with the designated pricing kernel.

Date: 2020-06, Revised 2020-09
New Economics Papers: this item is included in nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2006.12989 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.12989

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2006.12989