Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency
Haozhe Zhang and
Yehua Li
Papers from arXiv.org
Abstract:
We consider spatially dependent functional data collected under a geostatistics setting, where locations are sampled from a spatial point process. The functional response is the sum of a spatially dependent functional effect and a spatially independent functional nugget effect. Observations on each function are made on discrete time points and contaminated with measurement errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor product spline estimator for the spatio-temporal covariance function. When a coregionalization covariance structure is further assumed, we propose a new functional principal component analysis method that borrows information from neighboring functions. The proposed method also generates nonparametric estimators for the spatial covariance functions, which can be used for functional kriging. Under a unified framework for sparse and dense functional data, infill and increasing domain asymptotic paradigms, we develop the asymptotic convergence rates for the proposed estimators. Advantages of the proposed approach are demonstrated through simulation studies and two real data applications representing sparse and dense functional data, respectively.
Date: 2020-06, Revised 2021-06
New Economics Papers: this item is included in nep-ecm and nep-geo
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2006.13489 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.13489
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().