Robust and Efficient Approximate Bayesian Computation: A Minimum Distance Approach
David T. Frazier
Papers from arXiv.org
Abstract:
In many instances, the application of approximate Bayesian methods is hampered by two practical features: 1) the requirement to project the data down to low-dimensional summary, including the choice of this projection, which ultimately yields inefficient inference; 2) a possible lack of robustness to deviations from the underlying model structure. Motivated by these efficiency and robustness concerns, we construct a new Bayesian method that can deliver efficient estimators when the underlying model is well-specified, and which is simultaneously robust to certain forms of model misspecification. This new approach bypasses the calculation of summaries by considering a norm between empirical and simulated probability measures. For specific choices of the norm, we demonstrate that this approach can deliver point estimators that are as efficient as those obtained using exact Bayesian inference, while also simultaneously displaying robustness to deviations from the underlying model assumptions.
Date: 2020-06
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://arxiv.org/pdf/2006.14126 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2006.14126
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().