Off-Policy Exploitability-Evaluation in Two-Player Zero-Sum Markov Games
Kenshi Abe and
Yusuke Kaneko
Papers from arXiv.org
Abstract:
Off-policy evaluation (OPE) is the problem of evaluating new policies using historical data obtained from a different policy. In the recent OPE context, most studies have focused on single-player cases, and not on multi-player cases. In this study, we propose OPE estimators constructed by the doubly robust and double reinforcement learning estimators in two-player zero-sum Markov games. The proposed estimators project exploitability that is often used as a metric for determining how close a policy profile (i.e., a tuple of policies) is to a Nash equilibrium in two-player zero-sum games. We prove the exploitability estimation error bounds for the proposed estimators. We then propose the methods to find the best candidate policy profile by selecting the policy profile that minimizes the estimated exploitability from a given policy profile class. We prove the regret bounds of the policy profiles selected by our methods. Finally, we demonstrate the effectiveness and performance of the proposed estimators through experiments.
Date: 2020-07, Revised 2020-12
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2007.02141 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2007.02141
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().