EconPapers    
Economics at your fingertips  
 

Volatility model calibration with neural networks a comparison between direct and indirect methods

Dirk Roeder and Georgi Dimitroff

Papers from arXiv.org

Abstract: In a recent paper "Deep Learning Volatility" a fast 2-step deep calibration algorithm for rough volatility models was proposed: in the first step the time consuming mapping from the model parameter to the implied volatilities is learned by a neural network and in the second step standard solver techniques are used to find the best model parameter. In our paper we compare these results with an alternative direct approach where the the mapping from market implied volatilities to model parameters is approximated by the neural network, without the need for an extra solver step. Using a whitening procedure and a projection of the target parameter to [0,1], in order to be able to use a sigmoid type output function we found that the direct approach outperforms the two-step one for the data sets and methods published in "Deep Learning Volatility". For our implementation we use the open source tensorflow 2 library. The paper should be understood as a technical comparison of neural network techniques and not as an methodically new Ansatz.

Date: 2020-07
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://arxiv.org/pdf/2007.03494 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2007.03494

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-03-19
Handle: RePEc:arx:papers:2007.03494